

# ДАТЧИК ОСВЕЩЕННОСТИ SmartLH2V2-WFMB (Wi-Fi & Modbus-RTU)

# РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ И ПАСПОРТ ТФСП.416154.001РЭ



### введение

Настоящее руководство по эксплуатации и паспорт относятся к датчику освещенности SmartLH2V2-WFMB (далее — датчик).

Перед установкой датчика необходимо внимательно ознакомиться с настоящим руководством.

При покупке датчика необходимо проверить:

- комплектность;

- отсутствие механических повреждений корпуса датчика и разъемов, целостность провода питания;

- наличие идентификационных данных, подписей и штампа на странице «Свидетельство о приемке» в настоящем руководстве и паспорте.

### 1. НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Датчик предназначен для измерения освещенности в промышленном помещении, теплице. Датчик обеспечивает высокую точность и скорость измерений.

Интерфейсы передачи данных:

- беспроводный канал связи Wi-Fi 2.4 ГГц (протокол MQTT, с авторизацией), 802.11b, g, n;

- интерфейс RS-485 Modbus-RTU.

Параметры датчика, в том числе параметры сети и MQTT, устанавливаются через браузер.

### 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

| N⁰ | Параметр                         | Значение      | Примечание          |
|----|----------------------------------|---------------|---------------------|
| 1  | Диапазон измерения освещенности, | 065000        |                     |
|    | люкс                             |               |                     |
| 2  | Разрешение измерения             | 1             |                     |
|    | освещенности, люкс               |               |                     |
| 3  | Погрешность измерения            | ±5            | Возможна калибровка |
|    | освещенности, %                  |               | пользователем       |
| 4  | Напряжение питания, В            | 10-26         | Имеется встроенная  |
|    |                                  |               | защита от           |
|    |                                  |               | перенапряжения      |
| 5  | Ток потребления (пиковый), не    |               |                     |
|    | более, мА                        |               |                     |
|    | - при питании 24В                | 53 мА         |                     |
|    | - при питании 12В                | 90 мА         |                     |
| 6  | Интерфейс                        | Wi-Fi, 2.4ГГц | 802.11b, g, n       |
| 7  | Мощность Wi-Fi передатчика, не   | 20            |                     |



|    | более, dBm                        |          |  |
|----|-----------------------------------|----------|--|
| 8  | Чувствительность Wi-Fi приемника, | -90      |  |
|    | не менее, dBm                     |          |  |
| 9  | Скорость передачи по интерфейсу   | 9600 бод |  |
|    | Modbus-RTU                        |          |  |
| 10 | Диапазон рабочих температур, °С   | -4080    |  |

2.2 Конструктивные характеристики

Габаритные размеры корпуса: 145х88х68мм

Для крепления предусмотрены ушки и 4 отверстия М4.

Материал корпуса – ABS пластик.

Датчик поставляется с кабелем питания 2x0.75мм. Длина кабеля – стандартно 3м, по запросу – до 20 м.

Масса датчика -не более 500 г для датчика с кабелем длиной 5м.

## 3. УСЛОВИЯ ЭКСПЛУАТАЦИИ

Датчик предназначен для эксплуатации в следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;

- температура окружающего воздуха от -40 до +80 °C;

- относительная влажность воздуха от 0 до 100%, без конденсации влаги;

- атмосферное давление от 84 до 106,7 кПа.

## 4. МЕРЫ БЕЗОПАСНОСТИ

4.1 По способу защиты от поражения электрическим током прибор соответствует классу защиты III по ГОСТ 12.2.007.0.

4.2 Во время эксплуатации, технического обслуживания и поверки следует соблюдать требования следующих документов:

- ГОСТ 12.3.019;

- «Правила эксплуатации электроустановок потребителей»;

- «Правила охраны труда при эксплуатации электроустановок».

4.3 Не допускается попадание влаги на контакты разъемов датчика.

4.4 Датчик запрещено использовать в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4.5 Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании.

## 5. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

5.1 Измерение освещенности осуществляется с использованием специализированной микросхемы.



Цифровой сигнал с сенсорной микросхемы поступает на встроенный микроконтроллер, который в зависимости от настройки и подключения передает данные по интерфейсу Modbus-RTU и/или Wi-Fi.

5.2 Конструкция датчика показана на рисунке 5.1.





Рисунок 5.1 — Конструкция датчика

5.3 Подключение датчика к питанию осуществляется посредством двухжильного кабеля сечением 0.75 мм в соответствии с таблицей 5.1.

| raomida 5.1 1 acimilobka kaocha imilanna |            |  |
|------------------------------------------|------------|--|
| Цвет проводника                          | Назначение |  |
| Белый или коричневый                     | +Uпит      |  |
| Голубой                                  | 0 (Земля)  |  |

Таблица 5.1 Распиновка кабеля питания

5.4 Для подключения датчика по протоколу Modbus-RTU датчик подключается к дифференциальной линии RS-485, в соответствии с распиновкой в таблице 5.2. Тип разъема: OL1312/S4.



| Вывод разъема | Обозначение | Функция                       |
|---------------|-------------|-------------------------------|
| 1             | GND         | Земля                         |
| 2             | DLp         | Линия А интерфейса Modbus-RTU |
| 3             | DLn         | Линия В интерфейса Modbus-RTU |

#### Таблица 5.2 Распиновка разъема RS-485

5.5 По запросу в комплекте с датчиком может быть поставлен кабель SP-RS485-OL1310-xx (где xx — длина кабеля в м) с ответным разъемом с одной стороны и оголенными выводами с другой.

## 6. ПОДГОТОВКА ПРИБОРА К ИСПОЛЬЗОВАНИЮ

6.1 Извлечь датчик из упаковочной тары. Если датчик внесен в теплое помещение из холодного, необходимо перед включением дать датчику прогреться в течении не менее 2-х часов.

6.2 Подключить датчик к источнику питания.

## 7. РЕЖИМЫ РАБОТЫ И НАСТРОЙКА ПРИБОРА

#### 7.1 Режимы работы

Датчик поддерживает 2 интерфейса передачи данных:

1) беспроводный Wi-Fi интерфейс, протокол передачи MQTT

2) проводной интерфейс RS-485, протокол передачи Modbus-RTU.

#### 7.2 Регистры настройки датчика

Полный список регистров датчика приведен в таблице 7.1. Таблица 7.1 — Параметры настройки датчика

| # | Параметр                           | Описание                                                                                          | Значение по<br>умолчанию              | Дос   | туп    | Редакти<br>рование |
|---|------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|-------|--------|--------------------|
|   |                                    |                                                                                                   | · · · · · · · · · · · · · · · · · · · | Wi-Fi | Modbus | пользов<br>ателем  |
| 1 | SSID внешней Wi-Fi сети            | количество символов 40 (char)                                                                     | unknown                               | Дa    | Нет    | Дa                 |
| 2 | Пароль внешней Wi-Fi сети          | количество символов 40 (char)                                                                     | unknown                               | Да    | Нет    | Дa                 |
| 3 | Бит блокировки интерфейса<br>Wi-Fi | Установка запрещает<br>включение Wi-Fi<br>приемопередатчика (как точки<br>доступа, так и станции) | 0 (Wi-Fi<br>активен)                  | Дa    | Дa     | Да                 |
| 4 | Адрес МQTT-сервера                 | Адрес MQTT-сервера,<br>количество символов 40 (char)                                              | www.sqtt.ru                           | Дa    | Нет    | Дa                 |
| 5 | MQTT-порт                          | Номер порта МQTT-брокера                                                                          | 1883                                  | Дa    | Нет    | Дa                 |



| 6  | MQTT_USER        | Наименование MQTT-брокера,<br>количество символов 40 (char)                                       | SP_Broker          | Дa | Нет | Дa  |
|----|------------------|---------------------------------------------------------------------------------------------------|--------------------|----|-----|-----|
| 7  | MQTT_PASSWORD    | Пароль доступа MQTT-<br>брокера, количество символов<br>40 (char)                                 | xiY57b&rilRT3      | Дa | Нет | Дa  |
| 8  | MQTT_CLIENT_NAME | Наименование устройства для<br>идентификации в MQTT-<br>сервере, количество символов<br>40 (char) | SLH2WFMB           | Дa | Нет | Дa  |
| 9  | mqttTopicSys     | Передается значение времени<br>работы датчика, количество<br>символов 240 (char)                  | SLH2WFMB/<br>sys   | Да | Нет | Да  |
| 10 | mqttTopicLIGHT   | Значение освещенности<br>датчика освещенности,<br>количество символов 240 (char)                  | SLH2WFMB/<br>LIGHT | Да | Нет | Да  |
| 11 | Serial_Number    | Серийный номер,<br>устанавливается при прошивке<br>на предприятии                                 | 000000000          | Дa | Да  | Нет |
| 12 | resend_time      | Период опроса и передачи<br>показаний датчиков, в<br>секундах                                     | 60                 | Да | Нет | Да  |
| 13 | LIGHT_OFFSET     | Линейная поправка для<br>датчика освещенности, люкс<br>(float)                                    | 0                  | Да | Дa  | Нет |
| 14 | LGAIN            | Множитель, учитывающий<br>поглощение света в<br>рассеивателе датчика<br>освещенности (float)      | 1                  | Да | Да  | Нет |
| 15 | LIGHT            | Значение освещенности<br>датчика освещенности, люкс<br>(float)                                    | 0                  | Да | Да  | Нет |

Полный список настроек доступен только при настройке по Wi-Fi.

#### 7.3 Обмен по протоколу Modbus-RTU

Параметры интерфейса:

- скорость: 9600 бод;
- посылка 8 бит;
- количество стоповых битов: 1;
- контроль четности: нет
- адрес устройства: по умолчанию 1, программируется пользователем

Функция чтения - 3

Доступные по интерфейсу Modbus-RTU регистры приведены в таблице 7.2.



| Адрес | Параметр                                                                             | Тип данных | Доступ        |
|-------|--------------------------------------------------------------------------------------|------------|---------------|
| 1     | Бит блокировки интерфейса Wi-<br>Fi                                                  | Boolean    | чтение/запись |
| 2-3   | Серийный номер<br>преобразователя                                                    | String     | чтение        |
| 4     | Зарезервировано                                                                      | Boolean    | чтение/запись |
| 5-6   | Множитель, учитывающий<br>поглощение света в<br>рассеивателе датчика<br>освещенности | Float      | чтение/запись |
| 7-8   | Линейная поправка для датчика<br>освещенности                                        | Float      | чтение/запись |
| 9-10  | Данные освещенности                                                                  | Float      | чтение        |
| 11-12 | Данные температуры<br>контроллера датчика                                            | Float      | чтение        |
| 13    | Адрес датчика в сети Modbus<br>(Slave-ID)                                            | Byte       | чтение/запись |
| 14-17 | Серийный номер датчика                                                               | String     | чтение        |

#### Таблица 7.2 — Регистры Modbus-RTU датчика

Для настройки датчика по интерфейсу Modbus-RTU возможно использовать программное обеспечение SensModbus (предоставляется по запросу).

#### 7.4 Настройка датчика

Подключите датчик к питанию. Включите компьютер или смартфон.

Датчик включится и в течении 5-10с активирует точку доступа. На компьютере или смартфоне найдите точку доступа с названием вида: SLH2xxxxxxxxx (где xxxxxxxxxx — MAC-адрес датчика). Подключитесь к данной точке доступа, пароль: Smart2022.

После подключения откройте браузер и перейдите на IP-адрес 192.168.5.1. Далее на странице приветствия, рисунок 7.1, введите логин и пароль для доступа к странице настройки.



192.168.5.1

#### Вы не авторизованы!

| Логин:  |
|---------|
| Пароль: |
| •       |
| Войти   |

Рисунок 7.1 — Страница приветствия датчика

По умолчанию логин/пароль доступа к странице настройки: admin/Smart2023. После авторизации пользователь попадает на главную страницу, рисунок 7.2. С левой стороны страницы — меню и текущие показания, справа — настройки.

Страниц настройки — 4:

- Системные настройки;

- Настройки MQTT;

- Настройка датчика;

- Обновление прошивки.

На вкладке «Системные настройки», рисунок 7.2, задается SSID и пароль сети Wi-Fi, через которую датчик передает показания в облачный сервер. Также на этой вкладке можно задать адрес датчика в сети Modbus-RTU.

После ввода параметров необходимо нажать кнопку «Сохранить» и после нажать кнопку «Перезагрузить».

Также на данной странице отображается MAC-адрес, серийный номер и версия прошивки датчика.

|                                                                                                         | Auf mit debengembern ohne wir wie ohnoort                                                                                                                              |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Системные настройки<br>Настройки МОГТ<br>Настройка датчика<br>Обновление прошивки<br>Light, люкс: 86.67 | Sensor MAC:84:F7:03:1B:AA:38   Имя Wi-Fi сети   Пароль Wi-Fi сети   Серийный номер датчика:STH3WFMB-2022.01   Версия прошивки:SLH2V2WFMB-2023.01.rl.v1   Модbus ID   2 |
|                                                                                                         | Соданить Перезагрузить Смарт-Програм 2023                                                                                                                              |

Рисунок 7.2 — Страница системных настроек датчика

На странице «Настройки MQTT» рисунок 7.3 настраиваются параметры доступа к MQTT брокеру и наименования передаваемых топиков.



#### датчик освещенности 5LH2 w

| Системные настройки<br>Настройки МОТТ<br>Настройка датчика<br>Обновление прошивки<br>Light, люкс: 86.67 | Параметры MQTT брокера:<br>MQTT Сервер<br>194.67.64.213<br>MQTT порт<br>5989 |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                                         | MQTT User<br>best_broker                                                     |
|                                                                                                         | Пароль к МQTT серверу                                                        |
|                                                                                                         | Имя клиента на MQTT сервере<br>SLH2WFMB                                      |
|                                                                                                         | МQTT топики сенсора:                                                         |
|                                                                                                         | MQTT топик системных параметров<br>SLH2WFMB/sys                              |
|                                                                                                         | MQTT топик данных освещенности<br>SLH2WFMB/light                             |
|                                                                                                         | Сохранить Перезагрузить                                                      |
|                                                                                                         | Смарт-Програм 2023                                                           |

Рисунок 7.3 — Меню настройки параметров MQTT датчика

Для настройки доступны следующие параметры:

Поле «MQTT Сервер» - IP-адрес MQTT-сервера (брокера), через который будет работать датчик;

Поле «MQTT порт» - номер порта MQTT-сервера;

Поле «MQTT User» - имя пользователя на MQTT-сервере;

Поле «Пароль к MQTT серверу» - пароль для доступа на MQTT-сервер;

Поле «Имя клиента на MQTT сервере» - имя клиента для MQTT-сервера;

Поле «MQTT топик системных параметров» - название топика на MQTTсервере для отображения времени активности датчика после включения, например, «greenhouse1/sys»;

Поле «MQTT топик данных освещенности» - название топика для данных температуры на MQTT-сервере, например, «greenhouse1/light»;

Кроме указанных выше датчик передает ненастраиваемый топик присутствия для идентификации в облачной системе Смарт-Програм:

DevicesID/SLH2WFMBxxxxxxxxxxxx

На вкладке «Настройка датчика» настраиваются основные параметры датчика, рисунок 7.4.



## датчик освещенн

|                                                        | ID датчика освещенности (hex):0                        |
|--------------------------------------------------------|--------------------------------------------------------|
| <u>Системные настройки</u><br><u>Настройки MQTT</u>    | I2C Адрес датчика освещенности (hex):17                |
| <u>Настройка датчика</u><br><u>Обновление прошивки</u> | Поправка для освещенности<br>0.00                      |
| Light, люкс: 86.67                                     | Поправка на поглощение колпачка светоприемника<br>2.00 |
|                                                        | Период чтения и отправки данных, мсек<br>5000          |
|                                                        | Сохранить Перезагрузить                                |
|                                                        |                                                        |

Рисунок 7.4 — Меню настройки параметров датчика

Поле «Поправка для освещенности» служит для введения поправочного коэффициента по освещенности (линейный сдвиг) и заполняется при заводской настройке.

!Не меняйте данное значение без необходимости, точностные параметры в случае изменения не гарантируются.

Поле «Поправка на поглощение колпачка светоприемника» служит для учета поглощения света в колпачке (множитель) и заполняется при заводской настройке.

!Не меняйте данное значение без необходимости, точностные параметры в случае изменения не гарантируются.

Поле «Длительность цикла опроса датчика, мс» - введите требуемое время, через которое датчик будет передавать данные. Время вводится в мс (10000 соответствует 10 секундам).

Вкладка «Обновление прошивки» предназначено для обновления прошивки датчика.

|                                                            | дагчик освещенности элп2 уу гт                             |
|------------------------------------------------------------|------------------------------------------------------------|
| Системные настройки<br>Настройки МОТТ<br>Настройка датинка | Обновление прошивки<br>Выберите файл Файл не выбран Update |
| Обновление прошивки                                        | Смарт-П                                                    |
|                                                            |                                                            |

Рисунок 7.5 — Меню обновления прошивки датчика

Для обновления прошивки выберите файл прошивки (в формате bin) на своем компьютере и нажмите update. После обновления прошивки датчика автоматически перезагрузится. Проверить запись актуальной версии прошивки можно во вкладке системных настроек.



Для проверки правильности настройки можно использовать бесплатную программу MQTT Explorer http://mqtt-explorer.com/

При правильной настройке вы должны увидеть соответствующие топики и данные в программе, рисунок 7.6.



Рисунок 7.6 — Топики в MQTT Explorer при правильной настройке

Далее произведите настройку клиентского программного обеспечения. В качестве примера рассмотрим программу для смартфона IoTMQTTPanel. Установите программу. Введите данные вашего MQTT-сервера.

После откройте вкладку сервера, создайте новые панели для данных освещенности датчика нажав на символ «+» экрана. Выберите тип «Line Graph». Введите настройки топика для данных в соответствии с теми, что были сделаны при настройке датчика, сохраните панель. Примеры настройки панелей показаны на рисунке 7.7.

| 14:25 會 23°                       | 😧 Voi) 🧙 , I      | 73% 🗖 |
|-----------------------------------|-------------------|-------|
| ← Edit pan                        | el                |       |
| Panel name*<br>Освещенность       | 2                 |       |
| X axis divisor<br>5               | No of persistence |       |
| Topic for graph 1 * SENSOR/LIGH   | г                 |       |
| Label for graph 1<br>Освещенность | ь, люкс           |       |
| Chart color<br>#d70206            |                   |       |
| Show area                         | Show points       |       |
| Enable not                        | ification         | (?)   |
| Payload is                        | JSON Data         |       |
| Add more grapł                    | n                 | Đ     |

Рисунок 7.7 – Настройка датчика в программе IoTMQTTPanel



После настройки ваш смартфон будет отображать изменение освещенности от времени, рисунок 7.8.



Рисунок 7.8– Отображение данных после настройки

Количество клиентов, подключаемых к датчику, ограничено только MQTTброкером.

Датчик может использоваться внутри систем автоматизации, поддерживающих протокол MQTT.



## 8. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Возможные неисправности датчика приведены в таблице 6.1.

| Неисправность           | Вероятная причина           | Способ устранения             |
|-------------------------|-----------------------------|-------------------------------|
| Датчик не отвечает по   | Проблема соединения или     | Проверьте физическое          |
| интерфейсу Modbus-RTU   | некорректный адрес датчика  | соединение с датчиком         |
|                         |                             | Установить корректный адрес   |
|                         |                             | через через страницу          |
|                         |                             | настройки                     |
| Нет точки доступа       | Установлен бит блокировки   | Проверьте состояние и         |
|                         | интерфейса Wi-Fi            | сбросьте бит блокировки       |
|                         |                             | интерфейса Wi-Fi              |
| Не передаются данные на | 1. Нет соединения с внешней | 1. Проверьте корректность     |
| MQTT-брокер             | точкой доступа              | введенных SSID и пароля сети  |
|                         | 2. Некорректные             | 2. Проверьте корректность IP- |
|                         | аутинтификационные данные   | адреса и аутинтификационных   |
|                         | брокера                     | данных брокера                |

## 9. МАРКИРОВКА

8.1 На передней панели прибора нанесена следующая информация:

- наименование датчика
- наименование и логотип предприятия-изготовителя
- заводской номер
- надпись «Сделано в России»

8.2 На задней или боковой поверхности датчика указываются:

- МАС-адрес датчика;
- наименование точки доступа;
- логин/пароль входа на страницу настройки

## 10. УПАКОВКА

Датчик упаковывается в упаковочную тару — упаковывается в полиэтиленовый пакет и помещается в картонную коробку.

## 11. ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

10.1 Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150. В воздухе не должны присутствовать агрессивные примеси. 10.2 Транспортирование допускается всеми видами транспорта в закрытых транспортных средствах, обеспечивающих сохранность упаковки при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.



## 12. КОМПЛЕКТНОСТЬ

Комплектность поставки датчика приведена в таблицу 12.1

#### Таблица 12.1

| Наименование                          | Количество | Примечание                   |
|---------------------------------------|------------|------------------------------|
| Датчик                                | 1 шт       |                              |
| Руководство по эксплуатации и паспорт | 1 шт       |                              |
| Кабель SP-RS485-OL1310-xx             | 1 шт       | Для модификации<br>-RS485-уу |
| Вилка OL1310/P4                       | 1 шт       | Для модификации<br>-OL1310   |

## 13. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

12.1 Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении потребителем условий эксплуатации, монтажа, хранения и транспортирования

12.2 Гарантийный срок эксплуатации – 24 месяца со дня продажи.

12.3 В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

12.4 В случае проведения гарантийного ремонта гарантия на прибор продлевается на время ремонта, которое отмечается в листе данных о ремонте прибора.

12.5 Доставка прибора изготовителю осуществляется за счет потребителя.

Доставка осуществляется по адресу:

124536, город Москва, г Зеленоград, ул Юности, д. 8, этаж 10 помещ./часть ком. XII/15, ООО «Смарт-Програм».

12.6 Гарантия изготовителя не распространяется и бесплатный ремонт не осуществляется:

- в случае внешних и/или внутренних повреждений датчика, сенсора, разъема, кабеля;

- при наличии следов несанкционированного вскрытия и/или изменения конструкции;

- в случае загрязнения корпуса датчика и сенсора;

- в случае выхода из строя прибора или датчиков в результате работы в недопустимо агрессивной среде.

12.7 Изготовитель осуществляет платный послегарантийный ремонт датчика.

12.8 Адрес электронной почты для приемки претензий и вопросов по качеству: support@smart-program.ru



## 14. УСЛОВНОЕ ОБОЗНАЧЕНИЕ ДАТЧИКА ПРИ ЗАКАЗЕ

| Обозначение для заказа       | Описание                                                                        |
|------------------------------|---------------------------------------------------------------------------------|
| SmartLH2V2-WFMB-Lxx          | Датчик базовой модификации<br>Где Lxx — длина кабеля питания в метрах           |
| SmartLH2V2-WFMB-Lxx-OL1310   | Дополнительно комплектуется розеткой на кабель                                  |
| SmartLH2V2-WFMB-Lxx-RS485-yy | Дополнительно комплектуется кабелем для<br>интерфейса RS-485 длиной уу в метрах |
| SP-RS485-OL1310-xx           | Кабель интерфейса RS485 длиной xx                                               |



## 15. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

| 13.1 Датчик SmartLH2V2-WFM | IB           | зав.№_    |         |    |            |          | ,   |
|----------------------------|--------------|-----------|---------|----|------------|----------|-----|
| МАС адрес:                 |              | и         | ЗГОТОВЛ | ен | в соответо | твии с Т | Уи  |
| комплектом конструкторской | документации | ТФСП.4161 | 54.001  | И  | признан    | годным   | для |
| эксплуатации.              |              |           |         |    |            |          |     |
| Версия прошивки:           |              |           |         |    |            |          |     |
|                            |              |           |         |    |            |          |     |
|                            |              |           |         |    |            |          |     |
| Дата выпуска               |              |           |         |    |            |          |     |
|                            |              |           |         |    |            |          |     |
| Представитель ОТК          |              |           |         |    |            |          |     |
|                            |              |           |         |    |            |          |     |
| Представитель изготовителя |              |           |         |    |            |          |     |
|                            |              |           |         |    |            |          |     |
|                            |              |           |         |    |            |          |     |
| М.П.                       |              |           |         |    |            |          |     |
|                            |              |           |         |    |            |          |     |
|                            |              |           |         |    |            |          |     |

ООО «Смарт-Програм» ИНН/КПП: 7735191058/773501001

Адрес: 124536, город Москва, г Зеленоград, ул Юности, д. 8, этаж 10 помещ./часть ком. XII/15

e-mail: info@smart-program.ru



## 16. ДАННЫЕ О РЕМОНТЕ ПРИБОРА

| Дата<br>поступления | Неисправность | Выполненные работы | Дата ремонта |
|---------------------|---------------|--------------------|--------------|
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |
|                     |               |                    |              |